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Exact solution of the Derbenev-Kondratenko i axis for & model with one resonance
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Let us call the quantization axis of the spin eigenstates of the Hamiltonian of a particle
circulating in e storage ring #i, i.e. the operator 5.fi commutes with the Hamiltonian:
{84, H} = 0, where {, } denotes & Poisson Bracket. The defining properties of 2 were
given by Derbenev and Kondratenko,' and are (i) 7 satisfies the equation of spin motion
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where @ is the spin precession vector, and (ii) 7 satisfies the periodicity conditions

A(T,6,8) = A(1, % +2m,8) = A(1,%,8 + 27) . (2)

Here {I,%} denotes the set of orbital action-angle variables, i.e. 7 depends on the orbital
trajectory. Thus there is not just one value of n for &ll trajectories, but an infinite set, one
for each value of {I,7}.

The above definition is rather abstract, and in general 7 has been calculated exactly
only on the closed orbit of a storage ring. Perturbation theory has had to be used to find
i on other trajectories.? There is a simple non-trivial model, however, where one can solve
for 7 exactly, and that is the point of this note.

The model is a vertical static field plus & horizontal field roteting at tune Q. We
decompose 1 in Eq. (1) into Q = Q + &, where 2, is the value on the closed orbit and &
is the additional term due to an orbital oscillation. Then
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The vertical field is the main field that makes the particles circulate around the ring,
and & is the perturbation due to spin-orbit coupling. Here 1, is the initial phase of the
orbital oscillation, and ¢ describes the strength of the spin-orbit coupling. The coordinate
system is & radial, ¥ longitudinal and # vertical. A positive rotation is counterclockwise.
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The above model cannot be constructed exactly in a storage ring, because real mag-
nets produce more than one harmonic in &. However, the ebove model is still a valid
Hamiltonian system, and is a good epproximation near the resonance v = Q.

Let us first review the case where §1 = l; only. Then the spm precesses around o,
which is a constant vector, and the solution for # is obvious: it is just # || 3o, i.e. # = 2.

We now consider (I = 3y +&. We first transform to a frame rotating counterclockwise
at tune Q around 2. Then the spin precession tune around z becomes v —~ Q and & becomes
stationary. Using primes to denote vectors in the new frame,

Q' = (v—Q): +eld' cos(thp) + §'sin(tho) | = (v — Q) + € . (4)

In this freme 5" precesses around €)', which is a constant. The solution for # is 7 || ', i.e.
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We therefore see that 7 is the spin rotation axis in the frame where the Hamiltonian
is stationary. The diagonalized Hamiltonian is

H - Horb + ;'-ﬁ‘
QI+ /(v—QF teia (6)

In other frames, where H is not stationary, 5.7 still commutes with the Hamiltonian in
that frame, because of the invariance of Poisson Brackets under canonical transformations,
i.e. {7, H} = 0in all frames related to the above by a canonical transformation (a proof
of this statement is given in Ref. 3). (Here H means the Hamiltonian in the frame after
the canonical transformation.) In the original reference frame, the solution is

ﬁz(u—Q)£+e[:Ecos¢+3}sin1,b] . (7
v-Qrie

This obviously satisfies the periodicity conditions Eq. (2). Notice that 7 is not parallel to
). The vector # is constrained to be & unit vector in all frames, whereas {1 is not. Hence
they transform differently under canonical transformations. The Derbenev-Kondratenko
definition (Eqs. (1) and (2}) allows one to calculate #i purely in terms of functions specified
in one frame, without the need for canonical transformations, which can be complicated,
in general.
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The above model also helps one to understand the distribution of spin eigenstates
in equilibrium, e.g. in & high-energy electron storage ring. When @ | 2 only, all the
eigenstates nre quantized vertically, end so the polarization will be vertical also. When
§ is not the same for all trajectories, the spin states will be quantized along # for each
trajectory, because that is the spin precession axis when the Hamiltonian is stationary.
The equilibrium distribution of spins will be a cone of vectors (7), where the average is
over the equilibrium distribution of orbital actions and angles. The “local polarization”
for particles in a small phase-space volume element dI dy around {I,3} will thus point
along 1, and the “globel polarization” is given by the phase-space average

P, = j FU Y ER) A dl dy | (8)

where f is the probability density function of particles in orbital phase space and (5.1} is
the average spin projection of particles along 7 in the volume element dI dy around {7,v'}.
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